Консультация онлайн # 202657

Раздел: Математика
Автор вопроса: angelinabrehova (Посетитель)
Дата: 21.04.2022, 22:16 Консультация неактивна
Поступило ответов: 1
Здравствуйте! У меня возникли сложности с данной задачей:

График квадратного трехчлена, наименьшее значение которого равно -4,5 при х=2, проходит через точку А(7;8). Найти расстояние от начала координат до касательной, проведённой к этой параболе в точке х0=3.
Условие: График функции y(x) = a·x2 + b·x + c проходит через точку А(7;8) , а в точке минимума Xm = 2 имеет значение Ym = -4,5 . Коэффициенты a, b, c нам пока не известны.
Вычислить расстояние от начала координат до касательной, проведённой к этой параболе в точке X0 = 3.

Решение: Вычисляем производную нашей функции: y'(x) = (a·x2 + b·x + c)' = 2·a·x + b
В точке Xm минимума производная y'(x) равна нулю: 2·a·Xm + b = 0

Связываем все имеющиеся данные в систему из 3х уравнений с 3мя неизвестными a, b, c . Решать эту систему уравнений Вы можете любым удобным Вам способом (в тч используя OnLine-калькуляторы). Я люблю вычислять в популярном приложении Маткад (ссылка) . Маткад избавляет меня от частых ошибок. Маткад-скриншот с формулами и Решением прилагаю. Я добавил в скрин подробные комментарии зелёным цветом.
Ответ: расстояние от начала координат до касательной равно 7·√2 / 2 ≈ 4,95 ед.
МаткадКонструкция Xp := Уравнение solve,x означает Решить уравнение, прописанное слева от solve относительно искомой переменной x, и затем присвоить полученный результат в переменную Xp .
Для страховки от возможных ошибок я сделал Проверку. Лучшая проверка для подобных задач - это график. Я добавил график в скриншот. Если что-то осталось непонятным, задавайте вопросы в мини-форуме ниже. =Удачи!

Алексеев Владимир Николаевич

Мастер-Эксперт
22.04.2022, 06:38
Нет оценки ответа

Мини-форум консультации # 202657


Нет сообщений в мини-форуме
Возможность оставлять сообщения в мини-форумах консультаций доступна только после входа в систему.
Воспользуйтесь кнопкой входа вверху страницы, если Вы зарегистрированы или пройдите простую процедуру регистрации на Портале.