Лидеры

ID: 259041

Алексеев Владимир Николаевич

Мастер-Эксперт


ID: 226425

Konstantin Shvetski

Модератор


ID: 401284

Михаил Александров

Советник


ID: 137394

Megaloman

Мастер-Эксперт


ID: 400669

epimkin

Профессионал


ID: 401888

puporev

Профессор


ID: 405239

al4293189

4-й класс


8.13.11

14.01.2022

JS: 2.13.38
CSS: 4.8.5
jQuery: 3.6.0
DataForLocalStorage: 2022-01-24 11:16:01-standard


Консультация онлайн # 200910

Раздел: Математика
Автор вопроса: mfti (Посетитель)
Дата: 22.05.2021, 16:36 Консультация закрыта
Поступило ответов: 1
Здравствуйте! Прошу помощи в следующем вопросе: Найдите остаток от деления многочлена 3z^2017 - 2z^503 + 4z^302 + 8 на многочлен z^2 - z + 1

Ответ # 1, vsetin (Студент)

Заметим, что, если умножить z2-z+1 на z+1, то получим z3+1, т.е. z3+1 = (z+1)*(z2-z+1).

С другой стороны, предположим, что после деления многочлена на z3+1 получаем в качестве частного многочлен A(z) и остаток B(z).

Значит, первоначальный многочлен представляется в виде: A(z)*(z3+1) + B(z) или A(z)* (z+1)*(z2-z+1) + B(z).

Отсюда следует, что первое слагаемое также делится на z2-z+1. Поэтому для решения задачи вместо первоначального многочлена достаточно рассмотреть его остаток B(z) от деления на z3+1, который будет многочленом не выше второй степени, а потом найдем остаток от его деления на z2-z+1 и получим ответ к задаче.

Заметим также, что zn = zn-3*(z3+1) - zn-3, а также zn = zn-3*(z3+1) - zn-6*(z3+1)+ zn-6.

То есть для определения остатка при делении zn на z3+1 достаточно рассматривать остаток от деления на z3+1 одночлена (-zn-3) или zn-6. Разумеется, если степень соответствующего одночлена неотрицательная.

Таким образом, вместо z2017 можно рассматривать просто z, т.е. остаток от деления 2017 на 6 равен 1, что обозначим как 2017%6 =1.
Вместо z503 рассматриваем z5, т.к. 503%6=5 или (-z2), т.к. при понижении степени на 3 меняется знак перед одночленом (см. выше).
Вместо z302 рассматриваем z2, т.к. 302%6=2.

Таким образом вместо многочлена z2017 - 2*z503 + 4*z302 + 8 рассматриваем многочлен:

z - 2* (-z2) + 4*z2 + 8 = 6*z2 + z + 8.

Делим его на z2 - z + 1 и получаем искомый остаток 5*z + 2.

ОТВЕТ: 5*z + 2.

Вроде бы, так.


vsetin

Студент
22.05.2021, 21:21
5

Мини-форум консультации # 200910


Нет сообщений в мини-форуме
Возможность оставлять сообщения в мини-форумах консультаций доступна только после входа в систему.
Воспользуйтесь кнопкой входа вверху страницы, если Вы зарегистрированы или пройдите простую процедуру регистрации на Портале.