Консультация онлайн # 161394

Раздел: Математика
Автор вопроса: Истомина Елена Андреевна
Дата: 25.02.2009, 18:29 Консультация неактивна
Поступило ответов: 1
Найти производную второго подрядка y'' от функции заданной параметрически. {x=t+sint, y=2-cost

Ответ # 1, Айболит (Посетитель)

Здравствуйте, Истомина Елена Андреевна!
Сначала найдём частные производные по t первого и второго порядков .
y'=sint ; y"=cost ; x'=1+cost ; x"=-sint .
Для нахождения производной от функции заданой параметрически существует специальная формулла :
(d^2)y/d(x^2)=(x'*y"-y'*x")/((x')^3) . Подставим в неё найденные частные производные и получим ответ .
(d^2)y/d(x^2)=(сost+((cost)^2)+((sint)^2))/((1+cost)^3)=(cost+1)/((1+cost)^3)=1/((1+cost)^2)=(d^2)y/d(x^2) .
cost=2-y - если заменить это на конечное выражение - то получим вторую производную выраженую через у , аналогично можно поступить из х , но обычно оставляют значения искомой производной в параметрическом виде .

Айболит

Посетитель
25.02.2009, 18:48
Нет оценки ответа

Мини-форум консультации # 161394


Нет сообщений в мини-форуме
Возможность оставлять сообщения в мини-форумах консультаций доступна только после входа в систему.
Воспользуйтесь кнопкой входа вверху страницы, если Вы зарегистрированы или пройдите простую процедуру регистрации на Портале.