20.06.2018, 20:14 [+3 UTC]
в нашей команде: 2 851 чел. | участники онлайн: 4 (рекорд: 21)

:: РЕГИСТРАЦИЯ

:: задать вопрос

:: все разделы

:: правила

:: новости

:: участники

:: доска почёта

:: форум

:: блоги

:: поиск

:: статистика

:: наш журнал

:: наши встречи

:: наша галерея

:: отзывы о нас

:: поддержка

:: руководство

Версия системы:
7.47 (16.04.2018)

Общие новости:
13.04.2018, 10:33

Форум:
18.06.2018, 08:55

Последний вопрос:
20.06.2018, 15:21

Последний ответ:
20.06.2018, 09:02

Последняя рассылка:
20.06.2018, 03:15

Писем в очереди:
0

Мы в соцсетях:

Наша кнопка:

RFpro.ru - здесь вам помогут!

Отзывы о нас:
26.04.2011, 19:51 »
srphoenix
Очень подробное решение,спасибо. [вопрос № 182928, ответ № 266824]
06.05.2016, 22:06 »
plaob
Подробное объяснение, мне понравилось [вопрос № 189309, ответ № 273750]

РАЗДЕЛ • Физика

Консультации и решение задач по физике.

[администратор рассылки: Roman Chaplinsky / Химик CH (Модератор)]

Лучшие эксперты в этом разделе

Зенченко Константин Николаевич
Статус: Модератор
Рейтинг: 274
epimkin
Статус: Практикант
Рейтинг: 151
CradleA
Статус: Профессор
Рейтинг: 147

Перейти к консультации №:
 

Консультация онлайн # 191391
Раздел: • Физика
Автор вопроса: oktyabrinabaeva (Посетитель)
Отправлена: 28.09.2017, 20:36
Поступило ответов: 1

Уважаемые эксперты! Пожалуйста, ответьте на вопрос:
определите напряженность и потенциал заряженного по объему шара, если радиус шара R, объемная плотность заряда в шаре r. нарисовать графики напряженности и потенциала

Состояние: Консультация закрыта

Здравствуйте, oktyabrinabaeva!

Анализируя условие задачи, придём к выводу, что рассматриваемое электрическое поле обладает сферической симметрией, силовые линии поля - прямые, направленные радиально.

Обозначим объёмную плотность заряда внутри шара буквой

Воспользуемся теоремой Гаусса. Вспомогательную поверхность радиуса примем сферической, с центром в центре рассматриваемого шара. Теорема Гаусса для вспомогательной поверхности в вакууме может быть записана в виде


где - полный заряд, содержащийся в объёме, который ограничен вспомогательной поверхностью - электрическая постоянная. На вспомогательной поверхности нормаль совпадает с направлением радиус-вектора, поэтому

Следовательно,


Полный заряд, стоящий в правой части формулы зависит от радиуса вспомогательной поверхности.

При

Тогда из выражений получим



При

Тогда из выражений получим




Из выражений видно, что при напряжённость поля прямо пропорциональна а при - обратно пропорциональна При этом

то есть функция непрерывна в точке

Итак,


Эскиз графика функции показан ниже.



Зависимость потенциала рассматриваемого поля от радиуса вспомогательной поверхности можно установить, учитывая, что Тогда при

В частности, если принять, что (начало отсчёта потенциала выбрано в центре объёмно заряженного шара), то


и при

В силу непрерывности функции и согласно формулам получим


Из формул получим, что при


Итак, если то


Проверьте предложенное решение задачи прежде, чем использовать его. И попробуйте, пожалуйста, выполнить рисунок зависимости самостоятельно. Соответствующая кривая выходит из начала координат как парабола, при плавно переходит в гиперболу, асимптотически приближаясь к прямой Это значение потенциала в три раза больше по абсолютной величине, чем значение потенциала при


Консультировал: Гордиенко Андрей Владимирович (Модератор)
Дата отправки: 02.10.2017, 10:10

Рейтинг ответа:

0

[подробно]

Сообщение
модераторам

Отправлять сообщения
модераторам могут
только участники портала.
ВОЙТИ НА ПОРТАЛ »
регистрация »

Возможность оставлять сообщения в мини-форумах консультаций доступна только после входа в систему.
Воспользуйтесь кнопкой входа вверху страницы, если Вы зарегистрированы или пройдите простую процедуру регистрации на Портале.

Яндекс Rambler's Top100

главная страница | поддержка | задать вопрос

Время генерирования страницы: 0.13378 сек.

© 2001-2018, Портал RFPRO.RU, Россия
Калашников О.А.  |  Гладенюк А.Г.
Версия системы: 7.47 от 16.04.2018